IS PARABOLIC TROUGH SOLAR POWER PLANT TECHNOLOGY READY FOR ITS NEXT GROWTH SURGE?

David Kearney, K&A

Henry Price, NREL

WREC
Denver, Colorado
31 August 2004

YES

but why?

Excellent operating experience
Technology advances
Stronger supplier base
Large plants in development
Opportunities for significant new deployments

Parabolic Trough Collector

Illustration courtesy of Solar Millennium

- Typically tracks sun E-W on N-S axis
- High temperature oil flows through receiver
- Receiver highly efficient due to vacuum annulus and selective surface
- Major cost elements: structure, receivers, reflectors
- Mirror washing proven to be very effective

Key Technical Characteristics

- Parabolic trough collectors concentrate direct beam radiation onto receiver, heating circulating high temperature fluid at 400C
- Via shell-and-tube heat exchangers, solar field heat used to generate high temperature, high pressure steam
- Larger power systems can be either steam Rankine cycles or combined cycles, from 30MWe to over 300 MWe
- Systems can use fossil fuel or thermal storage to raise capacity factor or shift time of electrical production

Key Technical Characteristics (continued)

- Dispatchability achieved with thermal storage or hybrid operation (with fossil) => approaches firm power
- Proven long-term operation in California
- Technology development path to competitive electricity cost levels identified
- Ready for rapid manufacturing scale-up to GW level deployment

Solar Electric Generating System Rankine Cycle

- 354 MWe installed
- 7000 GWH operations
- 110% peak availability
- \$1.25 Billion invested
- Matured O&M proceduresTechnical advances lowered costs

Kramer Junction, Calif. Five 30-MWe Trough Plants

Cost Reduction Opportunities

Parabolic Trough Technology

- Plant Size
- Concentrator Design
- Advanced Receiver Technology
- Thermal Energy Storage
- O&M
- Design Optimization/Standardization
- Power Park
- Competition
- Financial

Trough Development Scenario

Breakdown of Cost Reduction (Sargent & Lundy)

Current State-of-the-Art 50 MWe Trough Plant

Current State-of-the-Art (Plant built today)

- 50 MWe (~100 bar, 700F, 37.5% gross)
- LS-2 Collectors (391 C)
- Receiver Solel UVAC
- Solar only or hybrid
- Solar multiple 1.5
- No thermal storage
- DNI 8.0 kWh/m²-day

Current Cost 11¢/kWh

Site: Kramer Junction	Solar	Hybrid
	Only	(25%)
Plant size, net electric [MWe]	50	50
Collector Aperture Area [km ²]	0.312	0.312
Thermal Storage [hours]	0	0
Solar-to-electric Efficiency. [%]	13.9%	14.1%
Plant Capacity Factor [%]	29.2%	39.6%
Capital Cost [\$/kWe]	2745	2939
O&M Cost [\$/kWh]	0.024	0.018
Fuel Cost [\$/kWh]	0.000	0.010
Levelized Cost of Energy	0.110	0.096
[2002\$/kWh]		

Near-Term Trough Plant

Trough Receiver Technology

Impact on the Cost of Energy

Vacuum between

Chemical sponges

Glass to

metal seal

glass envelope

and metal tube

Evacuation

nozzle

Steel

Glass

Near-Term 50 MWe Trough Plant

Near-Term 50 MWe Trough Plant

Future Development Scenario

Parabolic Trough Technology

	SEGS VI 1989	Near- Term	Mid- Term	Long- Term
Plant Size: MWe	30	50	100	400
Solar Multiple	1.2	1.5	2.5	2.5
Collector	LS-2	LS-2	LS-3+	Adv
Receiver	Luz	UVAC2	Adv	Adv
HTF	VP-1	VP-1	Salt	Salt
	390 C	390 C	450 C	500 C
TES	NA	NA	12 hrs	12 hrs
			TC Dir	TC Dir
Capacity Factor	22%	30%	56%	56%
Solar to Electric η	10.6%	13.4%	16.2%	17.2%
Cost Reduction			5%	20%
Capital Cost \$/kWe	2954	2865	3416	2225
O&M Cost \$/kWh	0.0462	0.0233	0.0103	0.0057

Trough Power Plant Scenarios

with Different Financing Assumptions

Market Pull Required for Success

- Market aggregation
- Incentives
- Favorable financing
- Policy changes
- Electricity production must be high to seriously impact reduction of green house gases
- Ultimate price goals tied to GW-scale deployment in 10-100 GW range

Summary

- Huge domestic resource potential
- Trough technology has significant opportunities for cost reduction
- Trough technology could directly compete with fossil power technologies in the long-term
- Market or financial incentives needed for early plants